Slow convergence of the BEM with constant elements in solving beam bending problems

نویسندگان

  • Y. J. Liu
  • Y. X. Li
چکیده

Constant elements offer many advantages as compared with other higher-order elements in the boundary element method (BEM). With the use of constant elements, integrals in the BEM can be calculated accurately with analytical integrations and no corner problems need to be addressed. These features can make fast solution methods for the BEM (such as the fast multipole, adaptive cross approximation, and precorrected fast Fourier transform methods) especially efficient in computation. However, it is well known that the collocation BEM with constant elements is not adequate for solving beam bending problems due to the slow convergence or lack of convergence in the BEM solutions. In this study, we quantify this assertion using simple beam models and applying the fast multipole BEM code so that a large number of elements can be used. It is found that the BEM solutions do converge numerically to analytical solutions. However, the convergence rate is very slow, in the order of h to the power of 0.55–0.63, where h is the element size. Some possible reasons for the slow convergence are discussed in this paper. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams

Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...

متن کامل

A fast multipole boundary element method for solving the thin plate bending problem

A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex not...

متن کامل

Vibration characteristics of axially loaded tapered Timoshenko beams made of functionally graded materials by the power series method

Abstract: In the present article, a semi-analytical technique to investigate free bending vibration behavior of axially functionally graded non-prismatic Timoshenko beam subjected to a point force at both ends is developed based on the power series expansions. The beam is assumed to be made of linear elastic and isotropic material with constant Poisson ratio. Material properties including the ...

متن کامل

Bending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements

This study presents the effect of porosity on mechanical behaviors of a power distribution functionally graded beam. The Euler-Bernoulli beam is assumed to describe the kinematic relations and constitutive equations. Because of technical problems, particle size shapes and micro-voids are created during the fabrication which should be taken into consideration. Two porosity models are proposed. T...

متن کامل

Application of Boundera Element Method (Bem) to Two-Dimensional Poisson's Eqation

BEM can be used to solve Poisson's equation if the right hand side of the equation  is constant because it can easily be transformed to an equivalent Laplace equation. However, if the right hand side is not constant, then such a treatment is impossible and part of the equation can not be transformed over the boundary, hence, the whole domain has to be discretized. Although this takes away impor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013